
1a)

My assignment in relation to Question 1 is a web application that allows users to input details about

themselves and display the details via http://www.it.murdoch.edu.au/cgi-bin/reply1.pl. The

application front-end utilises a HTML form page to allow for user details input. JavaScript in the front

end is responsible for HTML form page validation and processing. The HTML form input needs to be

validated to ensure the form is filled out correctly and thus displayed correctly and the server with

user information is not put at risk of being compromised. In the future, if the server needs to actually

permanently store all the user details this application should be extended and back end or server-

side validation should be implemented. Bypassing the front-end validation web applications rather

simple to do. Given the current specifications requires the server to collect, display, and discard each

HTML form submission server-side validation is not necessary. Both runtime and batch validation

has been implemented

Assumptions:

• Allow first name to have spaces. Evident my first name is Jin Cherng

• Smallest year starts at 1 because we follow Gregorian calendar

• Assume phone number prefix is based on international calling code

• Assume we use English numerals so Chinese numbers is not accepted

• Assume Australian two decimal place money do not need to be rounded as per law

o https://www.commerce.wa.gov.au/consumer-protection/rounding

o https://www.justweb.com.au/law-articles/rounding-up.html

1b)

Run time validation has been implemented. Runtime validation is where individual events provide

feedback. So, client is given feedback as he fills in the form. The disadvantage is that it can easily be

bypassed as it is just warnings. Runtime validation is seen in file: addUserFormValidator.js

Batch validation has been implemented. Batch validation is where the entire form is checked for any

errors. This is triggered at the end when the user presses the submit button. This validation will stop

the form submission from going to the server side to be processed. The benefit is the error can be

displayed without the for a page to be reloaded. Batch validation is seen in file:

addUserFormValidator.js ValidateHomeForm(…) function. The advantage of batch validation is that

errors can be displayed without the need to reload or re-render the page unlike server side

validation.

Adding user details:

http://www.it.murdoch.edu.au/cgi-bin/reply1.pl
https://www.commerce.wa.gov.au/consumer-protection/rounding

• AddUserFormHome.html

o Provides the client the ability to submit user a person’s details through POST

o Responsible for batch validating the client’s submission via clicking submission

button

▪ Calls ValidateHomeForm(….) from addUserFormValidator.js

o Responsible for providing real time validation via HTML textbox onchange attribute

▪ Calls ValidateBirthDate(…), ValidatePrefixCode(…),

ValidatePhoneNumber(…), ValidateFavPastTime(…), ValidFirstName(…), or

ValidLastName(..)

• addUserFormValidator.js

o Responsible for carrying out the HTML form validation of the input

o Contains ValidateHomeForm(…) and this function initiates the entire form being

validated. Importance is that that it handles POST batch validation

▪ Contains ValidateBirthDate(..) which is responsible for initiating the date of

birth textbox input being validated. This is run time validation

• Calls IsValidDateFormat(…) and IsValidDate(…) from

birthDateValidator.js

▪ Contains ValidatePrefixCode(..) which is responsible for initiating the prefix

code textbox input validation. This is run time validation

• Calls IsValidPrefixFormat(…) from phoneNumberValidator.js

▪ Contains ValidatePhoneNumber (..) which is responsible for initiating

textbox input phone number being validated. This is run time validation

• Calls IsValidPhoneNumber(…) from phoneNumberValidator.js

▪ Contains ValidateFavPastTime (..) which is responsible for initiating drop

down list input being validated. This is run time validation

▪ Contains ValidateFullName(..) responsible for initiating both full name and

last name input being validated.

o Responsible for displaying form messages functions (alert) providing client direct

form submission alerts

• birthDateValidator.js

o Responds by carrying out the processing of user’s date of birth input

o The creation of this file and abstracting the birth date logic to a separate file has

several benefits

▪ Improves readability through information hiding of the birth day

implementation logic

▪ Encourages efficient code reuse by allowing other programs to import this

file and are not exposed to other irrelevant logic

▪ Promotes open closed principle because when a potential change is made to

the date of birth logic the risk of accidentally harming the phone number

logic is minimised due the separate file encapsulation of date of birth logic

• phoneNumberValidator.js

o Responds by carrying out the processing of the user’s phone number or user’s prefix

code input

o Contains IsValidPhoneNumber(…) that handles the processing of user’s phone

number

o Contains IsValidPrefixFormat(…) that handles the processing of the user’s prefix

code

o The value of separating phone number validation logic in its own file is to improve

readability in that when the code base of the application gets larger and

modification is required with the phone number logic can easily be identified

1d)

List of Source Code for Question 1

addUserFormValidator.js
"use strict";

//Function for validating entire adding user form

//

//

function ValidateHomeForm(e) { //SELF NOTE: Why not seperate each test into it's own if? Putting all of

them in one AND condition ensures return at the first falsy encounter

 var addFormValid = false;

 if(ValidateFullName() && ValidateBirthDate() && ValidatePrefixCode() && ValidatePhoneNumber() &&

ValidateFavPastTime()) {

 addFormValid = true;

 } else {

 e.preventDefault(); //SELF NOTE: Why not only just return false? Don't want form details to be

reset this keeps current form state

 addFormValid = false;

 }

 return addFormValid;

}

//Functions for validating individual components of adding user form

//

//

function ValidateFullName() {

 var successName = false; //SELF NOTE: Why assign default false value? Better to be safe then sorry in

ensuring return is always going to be boolean

 if(ValidFirstName() && ValidLastName()) {

 successName = true;

 } else {

 successName = false;

 }

 return successName;

}

function ValidFirstName() {

 var isValid = false; //SELF NOTE: Why assign default false value? Better to be safe then sorry in

ensuring return is always going to be boolean

 var tempFirstName = document.getElementById("frmFirstName").value; //SELF NOTE: Why not put this line

in ValidateFullName()? Because this is a form entry point gets called in onchange="ValidFirstName()" html

 if(ValidName(tempFirstName)) {

 isValid = true

 } else {

 DspFirstNameError(tempFirstName);

 isValid = false;

 }

 return isValid;

}

function ValidLastName() {

 var isValid = false; //SELF NOTE: Why assign default false value? Better to be safe then sorry in

ensuring return is always going to be boolean

 var tempLastName = document.getElementById("frmLastName").value; //SELF NOTE: Why not put this line in

ValidateFullName()? Because this is a form entry point gets called in onchange="ValidLastName()" html

 if(ValidName(tempLastName)) {

 isValid = true

 } else {

 DspLastNameError(tempLastName);

 isValid = false;

 }

 return isValid;

}

function ValidateBirthDate() {

 var tempFullDate = document.getElementById("frmBirthDate").value;

 if(!IsValidDateFormat(tempFullDate)) { //SELF NOTE: Why not follow single return policy? Because we

only want one error displayed and we don't want to follow through with bad input

 DspBirthDateFormatError();

 return false;

 }

 if(!IsValidDate(tempFullDate)) {

 DspBirthDateValueError();

 return false;

 }

 return true; //SELF NOTE: Why return true rather then boolean assigned true? Because follows the guard

clause pattern

}

function ValidatePrefixCode() {

 var tempPrefixCode = document.getElementById("frmPhonePrefix").value;

 var validPrefix = false;

 var tempFullPrefix = tempPrefixCode.trimEnd(); //SELF NOTE: Why not put this logic in

IsValidPrefixFormat? Because this is an application specific action

 if(IsValidPrefixFormat(tempFullPrefix)) {

 validPrefix = true;

 } else {

 DspPrefixCodeError(); //SELF NOTE: Why not put in IsValidPrefixFormat logic? Because

IsValidPrefixFormat is logically concerned with whether prefix is valid or not. Not concerned with output

in response to validity

 validPrefix = false;

 }

 return validPrefix;

}

function ValidatePhoneNumber() {

 var tempPhoneNum = document.getElementById("frmPhoneNumber").value;

 var tempFullPhoneNum = tempPhoneNum.trimEnd(); //Removes likely space at end of input box

 var validNum = false;

 if(IsValidPhoneNumber(tempFullPhoneNum)) {

 validNum = true;

 } else {

 DspPhoneNumberError(); //SELF NOTE: Why not put in IsValidPhoneNumber? Because IsValidPhoneNumber

should be concerned with whether it is valid or not. Not concerned with output in response to validity

 validNum = false;

 }

 return validNum;

}

function ValidateFavPastTime() {

 var pastTimeList = document.getElementById("frmActivityList");

 var pastTimeSelectedIndex = pastTimeList.selectedIndex;

 var isValidOption = false;

 if(pastTimeSelectedIndex === 0) { //SELF NOTE: Why not == OR !pastTimeSelectedIndex? Because that means

null is accepted and undefined

 DspActivitySelectionError();

 isValidOption = false;

 } else {

 isValidOption = true;

 }

 return isValidOption;

}

//Functions for displaying form messages

//

//

function DspFirstNameError(tempFirstName) { //SELF NOTE: Why seperate output in it's own function? Because

output may change ensures open/close principle abide by could output through console.log

 PrintNameError(tempFirstName);

 document.getElementById("frmFirstName").focus();

 document.getElementById("frmFirstName").select();

}

function DspLastNameError(tempLastName) { //SELF NOTE: Why seperate output in it's own function? Because

output may change ensures open/close principle abide by could output through console.log

 PrintNameError(tempLastName);

 document.getElementById("frmLastName").focus();

 document.getElementById("frmLastName").select();

}

function DspBirthDateFormatError() { //SELF NOTE: Why seperate output in it's own function? Because output

may change ensures open/close principle abide by could output through console.log

 alert("Please enter Date of Birth in the correct format");

 document.getElementById("frmBirthDate").focus();

 document.getElementById("frmBirthDate").select();

}

function DspBirthDateValueError() { //SELF NOTE: Why seperate output in it's own function? Because output

may change ensures open/close principle abide by could output through console.log

 alert("Please enter a valid day, month and year");

 document.getElementById("frmBirthDate").focus();

 document.getElementById("frmBirthDate").select();

}

function DspPrefixCodeError() { //SELF NOTE: Why seperate output in it's own function? Because output may

change ensures open/close principle abide by could output through console.log

 alert("Please enter a valid prefix code");

 document.getElementById("frmPhonePrefix").focus();

 document.getElementById("frmPhonePrefix").select();

}

function DspPhoneNumberError() { //SELF NOTE: Why seperate output in it's own function? Because output may

change ensures open/close principle abide by could output through console.log

 alert("Please enter a valid phone number");

 document.getElementById("frmPhoneNumber").focus();

 document.getElementById("frmPhoneNumber").select();

}

function DspActivitySelectionError() { //SELF NOTE: Why seperate output in it's own function? Because

output may change ensures open/close principle abide by could output through console.log

 alert("Please select favourite past time");

 document.getElementById("frmActivityList").focus();

}

function PrintNameError(tempName) {

 if(IsEmpty(tempName)) {

 alert("Please enter your name");

 return;

 }

 if(!IsAllLetters(tempName)) {

 alert("Please use only letters (a-z) for names");

 return;

 }

}

//General Helper Functions

//Contains functions that can be used in different context not application specific

//

function ValidName(tempName) {

 var isValid = false; //SELF NOTE: Why assign default false value? Better to be safe then sorry in

ensuring return is always going to be boolean

 var tempName = tempName.trimEnd();//SELF NOTE: Why not put this logic in ValidLastName/ValidFirstName?

Regardless removing white space at end has no side effects in this function

 if(!IsEmpty(tempName) && IsAllLetters(tempName)) {

 isValid = true; //SELF NOTE: Why not also send output message? Because breaks single responsibility

in that ValidName should only return true/false NOT also handle error message logic

 } else {

 isValid = false; //SELF NOTE: Isn't this redundant? Yes, but we want to rely on condition assigning

false rather then default false

 }

 return isValid;

}

function IsEmpty(tempField) { //SELF NOTE: Why not have document.getElementById(...) in here? Because this

function can be reused in many different context we don't want to tie it down to a single field or app

logic

 var emptyField = false; //SELF NOTE: Why assign default false value? Better to be safe then sorry in

ensuring return is always going to be boolean

 if(tempField === null || tempField === "") {

 emptyField = true;

 } else {

 emptyField = false;

 }

 return emptyField;

}

function IsAllLetters(tempField) { //SELF NOTE: Why not have document.getElementById(...) in here? Because

this function can be reused in many different context we don't want to tie it down to a single field or app

logic

 var letterField = false; //SELF NOTE: Why assign default false value? Better to be safe then sorry in

ensuring return is always going to be boolean

 var onlyLetters = /^[A-Za-z]+$/; //https://stackoverflow.com/questions/23476532/check-if-string-

contains-only-letters-in-javascript

 if(tempField.match(onlyLetters)) {

 letterField = true;

 } else {

 letterField = false;

 }

 return letterField;

}

function IsAllNumbers(tempField) { //SELF NOTE: Why not have document.getElementById(...) in here? Because

this function can be reused in many different context we don't want to tie it down to a single field or app

logic

 var numberField = false;

 var onlyNumbers = /^\d+$/;

 if(tempField.match(onlyNumbers)) {

 numberField = true;

 } else {

 numberField = false;

 }

 return numberField;

}

birthDateValidator.js
"use strict";

//Public Interface Functions for ValidateBirthDate function (date format validation)

//Contains the entire date of birth validation logic

//

function IsValidDateFormat(tempFullDate) {

 var dateFormat = /^\d{1,2}\/\d{1,2}\/[1-9]\d*$/;

 var validDateFormat = false;

 var tempFullDate = tempFullDate.trimEnd(); //Removes trailing ending zeros

 if(tempFullDate.match(dateFormat)) {

 validDateFormat = true;

 } else {

 validDateFormat = false;

 }

 return validDateFormat;

}

//Private Implementation Functions for ValidateBirthDate function (date value validation)

//Contains the entire date of birth validation logic

//

function IsValidDate(tempFullDate) { //SELF NOTE: Why isn't this considered a public interface function?

Because this functions error checking is dependent on IsValidDateFormat() being called before hand

 var tempFullDate = document.getElementById("frmBirthDate").value;

 var dateArray = tempFullDate.split("/").map(Number); //https://www.geeksforgeeks.org/how-to-convert-

array-of-strings-to-array-of-numbers-in-javascript/

 if(!IsValidMonth(dateArray[1]) || !IsValidYear(dateArray[2])) { //SELF NOTE: Why aren't we also

validating day? Because pointless since it depends on month

 return false;

 }

 if(IsValidDateCombination(dateArray[0], dateArray[1], dateArray[2])) {//SELF NOTE: Why not combine with

the above if? Thats short circuit evaluation and logically this function should not execute if MM/YYYY is

invalid

 return true;

 } else {

 return false;

 }

}

function IsValidDateCombination(tempDay, tempMonth, tempYear) {

 var validDate = false;

 const START_DAY = 1;

 switch(tempMonth) {

 case 1:

 validDate = WithinRange(tempDay, START_DAY, 31);

 break;

 case 2:

 var endDay = NumDaysInFeb(tempYear); //Handles leap year

 validDate = WithinRange(tempDay, START_DAY, endDay);

 break;

 case 3:

 validDate = WithinRange(tempDay, START_DAY, 31);

 break;

 case 4:

 validDate = WithinRange(tempDay, START_DAY, 30);

 break;

 case 5:

 validDate = WithinRange(tempDay, START_DAY, 31);

 break;

 case 6:

 validDate = WithinRange(tempDay, START_DAY, 30);

 break;

 case 7:

 validDate = WithinRange(tempDay, START_DAY, 31);

 break;

 case 8:

 validDate = WithinRange(tempDay, START_DAY, 31);

 break;

 case 9:

 validDate = WithinRange(tempDay, START_DAY, 30);

 break;

 case 10:

 validDate = WithinRange(tempDay, START_DAY, 31);

 break;

 case 11:

 validDate = WithinRange(tempDay, START_DAY, 30);

 break;

 case 12:

 validDate = WithinRange(tempDay, START_DAY, 31);

 break;

 default:

 validDate = false; //Default is vital because it does our error checking just in case of null

 }

 return validDate;

}

function NumDaysInFeb(tempYear) { //SELF NOTE: Why not validate incorrect year input like null? Because

this is helper internal function and entry point has been already validated

 var days = 28;

 if(IsLeapYear(tempYear)) {

 days = 29

 } else {

 days = 28;

 }

 return days;

}

function IsLeapYear(tempYear) { //SELF NOTE: Why not early return? Because guard clauses best used for non-

function logic such as null checks. Checking divisible by 4 is part of function logic and violates single

exit point

 var validLeapYear = false;

 if(((tempYear % 4 == 0) && (tempYear % 100 != 0)) || (tempYear % 400 == 0)) {

 validLeapYear = true;

 } else {

 validLeapYear = false

 }

 return validLeapYear;

}

function IsValidYear(tempYear) { //SELF NOTE: Why not validate incorrect year input like null? Because

this is helper internal function and entry point has been already validated

 return tempYear >= 1; //SELF NOTE: Why not use if statement then return? Because it's nothing else is

done but this simple check

}

function IsValidMonth(tempMonth) { //SELF NOTE: Why not validate incorrect MONTH input like null? Because

this is helper internal function and entry point has been already validated

 return ((tempMonth >= 1) && (tempMonth <= 12)) //SELF NOTE: Why not use if statement then return?

Because it's nothing else is done but this simple check

}

function WithinRange(tempNumCheck, tempStartNum, tempEndNum) { //SELF NOTE: Why not validate input? Because

this is helper internal function and entry point has been already validated

 return ((tempNumCheck >= tempStartNum) && (tempNumCheck <= tempEndNum))

}

phoneNumberValidator.js

"use strict";

//Private Implementation Functions for ValidatePhoneNumber function (number validation)

//Contains the entire phone number validation logic

//

function IsValidPhoneNumber(tempPhoneNumber) {

 const MAX_DIGITS = 12;

 var currentPhoneNumDigits = 0;

 if(!IsAllNumbers(tempPhoneNumber)) {

 return false; //SELF NOTE: Why not follow through with single return? Because we shouldn't proceed

if the input is not numbers whether number or not influences the below logic

 }

 currentPhoneNumDigits = tempPhoneNumber.length;

 if(currentPhoneNumDigits <= 12) { //SELF NOTE: Isn't this risky since null would be true? Yes, but

IsAllNumbers logic is strict in stopping this

 return true;

 }

 return false; //SELF NOTE: Why return true rather then boolean assigned true? Because follows the guard

clause pattern

}

//Private Implementation Functions for ValidatePhoneNumber function (prefix number validation)

//Contains the entire phone number validation logic

//

function IsValidPrefixFormat(tempFullPrefix) { //SELF NOTE: Why not put logic inside ValidatePrefixCode()?

Because this promotes abstraction, also open/closed principle and function likely to be extended with more

prefix formats

 var currentPrefixFormat = /^[+]{1}[1-9]\d{0,5}$/;

 var validPrefixFormat = false;

 if(tempFullPrefix.match(currentPrefixFormat)) {

 validPrefixFormat = true;

 } else {

 validPrefixFormat = false;

 }

 return validPrefixFormat;

}

AddUserFormHome.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>User Details Form</title>

 <script src="addUserFormValidator.js"></script>

 <script src="phoneNumberValidator.js"></script>

 <script src="birthDateValidator.js"></script>

 <head>

 <body>

 <h1><u>Add User Details:</u></h1>

 <p></p>

 <form action="http://www.it.murdoch.edu.au/cgi-bin/reply1.pl" method="post"

onsubmit="return ValidateHomeForm(event)">

 <label for="frmFirstName">First Name: </label>

 <input type="text" name="frmFirstName" id="frmFirstName"

onchange="ValidFirstName()" />

 <p></p>

 <label for="frmLastName">Last Name: </label>

 <input type="text" name="frmLastName" id="frmLastName" onchange="ValidLastName()"

/>

 <p></p>

 <label for="frmBirthDate">Date of birth:</label>

 <input type="text" id="frmBirthDate" name="frmBirthDate" placeholder="DD/MM/YYYY"

onchange="ValidateBirthDate()" />

 <fieldset style="border:none;padding: 0px;margin:0px">

 <p>Phone number:</p>

 <input type="text" id="frmPhonePrefix" name="frmFullPhoneNum"

placeholder="+61" size="2.5" onchange="ValidatePrefixCode()" maxlength="6" />

 <input type="text" id="frmPhoneNumber" name="frmFullPhoneNum"

placeholder="0123456789" onchange="ValidatePhoneNumber()" />

 </fieldset>

 <p>Favourite Past Time:</p>

 <select name="activities" id="frmActivityList" onchange="ValidateFavPastTime()">

 <option value="">--Please choose an option--</option>

 <option value="Surfing the Web">Surfing the Web</option>

 <option value="Playing sport">Playing sport</option>

 <option value="Listening to Music">Listening to Music</option>

 <option value="Watching TV">Watching TV</option>

 <option value="Playing Games">Playing Games</option>

 <option value="Community Service">Community Service</option>

 <option value="Daydreaming">Daydreaming</option>

 <option value="Reading">Reading</option>

 <option value="Meditation">Meditation</option>

 </select>

 <p><input type="submit" value="Submit"/></p>

 </form>

 </body>

</html>

ICT373– Assignment 1 | Semester 2, 2023

Magazine Service Program Document

Date of Submission: 7/4/2023

Author: Jin Cherng Chong
Java Files: AssociateCustomer, AssociateDatabase, Customer, Magazine, PayingCustomer,

PaymentMethod, Supplement, SupplementDatabase, Client, MagazineService, EmailPrinter,

IPayForAssociates

Question 2

Requirements/Specifications

Assumptions:

• End of month email includes cost of magazine for each customer that PayingCustomer is

paying

• Money is in AUD

• Money had been rounded to two decimal places. However, further rounding i.e 7.97 or 9.99

has not been done since legally electronic transaction does not require them to be rounded.

Online banking applications will show 7.98 and be able to deduct 0.77 cents. Refer-

o https://www.commerce.wa.gov.au/consumer-protection/rounding

o https://www.justweb.com.au/law-articles/rounding-up.html

• End of month is always 4 weeks i.e x 4

• In order for two supplement objects to be the same both the name and cost must be the

same

o For example, one supplement object has name- Times and cost: 8.00 while another

supplement object has name TiMeS and cost 7.99. While both supplements have the

same name the cost is different in that 8.00 is not 7.99 thus will be treated as not

equal

• A paying customer will never equal an associate customer regardless if they have the same

name, email address and list of supplements interested

The program seeks to make it easier to manage a personalised magazine service. This program

maintains a list of customers paying into the magazine service and paying for supplements offered

and subscribed to. A customer in the magazine service must be paid by some form. The customer

can pay for the services themselves this is classified as a paying customer. Or the customer must

have another paying customer pay for them. The program provides the option of generating weekly

emails, generating end of month email, adding a new customer, or removing existing customer.

https://www.commerce.wa.gov.au/consumer-protection/rounding
https://www.justweb.com.au/law-articles/rounding-up.html

User guide

To test out the magazine service program. Four files have been provided illustrate the programs

functionality-

1. MagazineServiceTest_AddCustomer.java

2. MagazineServiceTest_RemoveCustomer.java,

3. MagazineServiceTest_EndOfMonthEmails.java

4. MagazineServiceTest_FourWeeklyEmail.java

Double click (left click) on one of the files to open as illustrated

Then in the same location you double clicked, right click on the file and click run file. That will show

the console output outlining the program running

Structure/Design

Design description: [10]

There were several design decisions that were made when developing the application. In all

decisions I’ve tried to ensure SOLID principles were adhered to.

Keeping Customer Information
In my implementation of the “manage an online weekly personalised magazine service” program a

customer has to be paying for the service. However, a customer (paying customer) can pay for the

service themselves or have another customer pay for them. A customer who doesn’t pay for the

service in any form serves no purpose in my program. Any information in relation to them is not

kept. There are several reasons for this decision.

Firstly, this decision was made to ensure the program is as efficient as possible. Let’s say the

program has 2 million customers and only two customers are paying for the service. Performing

operations for a specific customer will require searching through large data set. Hence, removing

customers not paying in any form will make data set minimal as possible and program more efficient

ensuring program future proofing.

Secondly, the decision of not keeping customer’s details for customers not paying in any form was

made with data security being top of mind. In the event, where all the customer information is

leaked or breached only a minimal number of customers would be affected. This is supported by the

decision of not keeping customer’s details of customers not paying in any form.

It could be argued that keeping their information stops the need to add the customer information all

over again when the customer decides to use the service again in the future. Although valid, data

security, program efficiency and reducing memory usage were prioritised.

Customer, Associate Customer, Paying Customer
In this assignment there were several roles that was described. The assignment indicated a need for

a customer, associate customer, and paying customer. All three had unique attributes and

behaviours. For example, a paying customer had a payment method, customer had a name and a

paying customer could pay for associate customer. Hence, given customer, associate customer and

paying customer had behaviours and fields a class can be used to encapsulate each role. This is to

adhere to object orientation design.

The next decision was whether there was a relationship between the three potential classes. From

the assignment information it is stated that an associate customer “is a” customer. The phrase “is a”

is distinct because it commonly describes an inheritance relationship. An inheritance relationship is

described as one class having all the characteristics of another class but one class has additional

unique characteristics. In this case, it makes logical sense for associate customer to have the

characteristics of the customer class such as associate customer having a name, email, and

supplements interested. Similarly, even though paying customer is not described as ‘is a’ customer it

makes logical sense for paying customer to have all the characteristics of a customer such as

having a name, email, and supplements interested. Furthermore, both paying customer and

associate customer has additional unique characteristics such as paying customer having a payment

method and associate customer is not paying for their own subscription. So, inheritance relationship

so far seems logical.

In order, for an inheritance relationship between customer and paying customer and also customer

and associate customer to make the most sense Liskov substitution principle i.e the L in SOLID must

not be violated. The principal outlines three rules for ensuring inheritance relationship is the best

choice. Firstly, a child class must use all the data members of the parent class. Secondly, a child class

must require all the methods of the parent class. Thirdly, the ‘is a’ must make logical behaviour

sense. Associate customer and paying customer is a customer makes logical English sense. Secondly,

both associate customer and paying customer use all the customer data members (name, email

etc.). Thirdly, both require all the customer classes method. Hence, Inheritance adhering to Liskov

substitution principle further supports inheritance relationship.

The next decision made was whether customer class itself is an abstract class or a concrete

superclass. Customer class could not be an interface because an inheritance relationship was

needed. Also, customer required instance variables such as name which an interface can not

support. One main reason why an abstract class is needed is that it allows for a method without

implementation (abstract method). In this context, there is no abstract methods required in the

customer class. Therefore, customer class being an abstract class does seem not suitable. However,

another key reason for a class to be an abstract class is when the class makes no logical sense to be

instantiated. For example- an animal class with dog class subclass and fish subclass. The animal class

is an abstract concept and it doesn’t make logical sense for an animal to be running around or

instantiated. For assignment 1, the class customer does seem like an abstract concept. There is no

use case for a customer needing to be instantiated given the assignment specification. Especially

given my program does not store any information of customers not paying for the service in any

form as explained above. Also, not having to deal with customer object reduces the difficulty of

developing the program. The run time logic of converting a customer object to an associate

customer object or paying customer object is now of no concern. Thus, the customer class is an

abstract class because there is no logical reasons for a base customer to be instantiated

Façade design pattern
Façade design pattern was used and implemented in several classes in my program.

MagazineService.java, SupplementDatabase.java, and AssociateDatabase.java adopts a façade

design pattern. A façade design pattern provides a simple interface for complex subsystem. The

MagazineService class needs to deal with many different logical complexities. For example-

MagazineService needs to ensure an associate customer has a valid paying customer and allow for

the addition and deletion of customers in the MagazineService. A façade pattern in this case has

several benefits.

Firstly, by nature facade promotes abstraction and code reuse. Abstraction is when implementation

details is hidden from the client. MagazineService provides an AddCustomer and DeleteCustomer

method. The logic of determining whether a customer should be added to the service involves

searching the existing customers data set, seeing if it’s a duplicate, validating each attribute of

customer, and inserting to data structure. This entire logic is hidden from client and client only needs

to be concerned with what customer to add or remove. Also, since the addition and deletion logic

are encapsulated in their respective methods code reuse is promoted.

Secondly, it promotes single responsibility principle adherence. Single responsibility principle states

how a class should have only one responsibility. In the assignment 1 specification it mentions how a

paying customer will have a list of associate customers whom they pay for. A paying customer

should be responsible for their name, address, and email. However, the paying customer also having

to deal with the logic associated with maintaining their list of associate customers violates single

responsibility principle. Since, to maintain a valid list of associate customers it involves many

operations such as ensuring duplicate associate customer are not added, removing associate

customers and inserting and deleting from the data structure. Thus, façade encapsulates the logic

for maintaining the associate customer list for each paying customer leading to adherence of single

responsibility principle

In the future MagazineService.java may be more suitable to adopting singleton pattern design. A

singleton ensures a class has only one instance. MagazineService in the future would likely only

allow one instance of the class.

Associate customer & Paying customer
Associate customer and Paying customer relationship have two key characteristics.

1. An associate customer is being paid for by an existing paying customer i.e paying customer

currently in customerList (magazineService)

2. A paying customer can only pay for existing associate customer i.e associate customer

currently in customerList (magazineService)

There are several characteristics and operations that support this relationship-

Firstly, in order to create an instance of an associate customer the associate customer constructor

requires a paying customer parameter. This is to ensure an associate customer will always have a

paying customer.

Secondly, MagazineService encapsulates a list of customers in the service. When an associate

customer is added the class will determine whether associate customer to be added is being paid for

by an existing paying customer i.e paying customer currently in customerList (magazineService). If

associate customer is being paid by an existing paying customer the associate customer will be

added to the magazineService customerList. When a new paying customer is added to the

MagazineService all associate customers which the new paying customer supposedly is paying for is

all removed.

In essence, the addition of an associate customer to the magazine service will validate whether

associate customer to be added is being paid for by an existing paying customer and add associate

customer to the paying customer list of associates. Thereby, ensuring paying customer is paying for

existing associate customers.

Similarly, when an associate customer is removed from the MagazineService the MagazineService

also removes the associate customer from the paying customer list of associates. When a paying

customer is removed from the MagazineService all the associate customers being paid for by the

removed paying customer is also removed.

Adding/Removing Customer
The low-level implementation of the method adding customer and deleting customer was difficult.

Initially I wanted a single method for addition of any customers and a single method for removing

any customer. The initial thought was to reduce code duplication. However, during implementation

there was a pitfall that made me change approach. When a client adds a customer to the service it

required run time type identification via instance of. That’s because with the addition of associate

customers it required the class to also validate whether there is an existing paying customer in the

service that can pay for the associate customer to be added. Run time type identification (instance

of) is code smells. It violates open-closed principle. If an additional type of customer was created in

the future it would require the code to be with instance of to be edited to handle the additional

type. The approach of having overloaded AddCustomer and DeleteCustomer was selected to negate

the need to identify type at run time via instance of. Common operations were extracted out to their

own methods so it could be reused in each overloaded add customer and delete customer method.

Additionally overloaded methods is polymorphism utilisation.

1. Abstract class

2. Downcasting

3. AddCustomer(….,). The single biggest issue is that it would require instanceOf. This is code

smells. Thus I split them up on their own individual functions

4. Logic- Delete customer etc

5. Splitting AssociateDatabase/CustomerDatabase

6. Lack of respondes/error checking

7. Override equals

UML: [10]

Testing: [20]

Feature testing: Add a new customer to magazine service
Test File: MagazineServiceTest_AddCustomer.java

Evidence: https://www.youtube.com/playlist?list=PLUktbenWQI5gDoRzDnhuNcYt3JbxL5elC

Test

Test objective(s) Test step(s) Expected results Pass
/Fail

Evidence

1 Add PayingCustomer with
their supplement of
interest not offered by
MagazineService

• Create MagazineService

• Create PayingCustomer

• AddSupplementInterested for
PayingCustomer

• Add PayingCustomer to
MagazineService

• Print any of PayingCustomer email
to verify

PayingCustomer is not
added to
MagazineService. He will
have no emails displayed

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

2 Add PayingCustomer with
their supplement(s) of
interest being offered by
MagazineService

• Create MagazineService

• Add an offered supplement to
MagazineService

• Create PayingCustomer

• AddSupplementInterested for
PayingCustomer

• Add PayingCustomer to
MagazineService

• Print any of PayingCustomer email
to verify

PayingCustomer is
added to
MagazineService.
He will have an email
displayed

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

3 Add AssociateCustomer
with their supplement of
interest not offered by
MagazineService

• Create MagazineService

• Create AssociateCustomer

• AddSupplementInterested for
AssociateCustomer

• Add AssociateCustomer to
MagazineService

• Print any of AssociateCustomer
email to verify

AssociateCustomer is
not added to
MagazineService. He will
have no emails displayed

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

4 Add AssociateCustomer
with their supplement(s)
of interest being offered
by MagazineService

• Create MagazineService

• Add an offered supplement to
MagazineService

• Create AssociateCustomer

• AddSupplementInterested for
AssociateCustomer

• Add AssociateCustomer to
MagazineService

• Print any of AssociateCustomer
email to verify

AssociateCustomer is
added to
MagazineService.
He will have an email
displayed

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

5 Add AssociateCustomer
without his
PayingCustomer in
MagazineService

• Create MagazineService

• Create AssociateCustomer with
identified PayingCustomer

• Add AssociateCustomer to
MagazineService

• Print any of AssociateCustomer
email to verify

AssociateCustomer is
not added to
MagazineService. He will
have no emails displayed

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

6 Add AssociateCustomer
with his PayingCustomer
in MagazineService

• Create MagazineService

• Create PayingCustomer

• Create AssociateCustomer with
identified PayingCustomer

• Add PayingCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

• Print any of AssociateCustomer
email to verify

AssociateCustomer is
added to
MagazineService.
He will have an email
displayed

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

7 Add Customer without full
name

• Create MagaineService

• Create AssociateCustomer

• Create AssociateCustomer with
firstName only

• Add AssociateCustomer to
MagazineService

• Print any of AssociateCustomer
email to verify

Customer is not added
to MagazineService. He
will have no emails
displayed

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

8 Add Customer without an
email

• Create MagazineService

• Create PayingCustomer

• Create PayingCustomer without
email

• Add PayingCustomer to
MagazineService

• Print any of PayingCustomer email
to verify

Customer is not added
to MagazineService. He
will have no emails
displayed

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

9 Add the same
AssociateCustomer more
than once

• Create MagazineService

• Create AssociateCustomer

• Add AssociateCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

• Print any of AssociateCustomer
email to verify

AssociateCustomer is
not added to
MagazineService.
Duplicate
AssociateCustomer is
not stored in service.

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

10 Add more than one valid
AssociateCustomer

• Create MagazineService

• Create AssociateCustomer

• Create AssociateCustomer

• Add AssociateCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService with all the same
details as previous added
AssociateCustomer except
different firstName

• Print any of AssociateCustomer
email to verify

All valid
AssociateCustomer is
added to the
MagazineService. All
valid AssociateCustomer
added will have an email
(of theirs) displayed

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

11 Add more than one valid
PayingCustomer

• Create MagazineService

• Create PayingCustomer

• Create PayingCustomer

• Add PayingCustomer to
MagazineService

• Add PayingCustomer to
MagazineService

• Print any of PayingCustomer email
to verify

All valid PayingCustomer
is added to the
MagazineService. All
valid PayingCustomer
added will have an email
(of theirs) displayed

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

12 Add more than one valid
customer of different
types

• Create MagazineService

• Create PayingCustomer

• Create AssociateCustomer

• Create AssociateCustomer

• Add AssociateCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

All valid customers
(PayingCustomer and
AssociateCustomer
types) are added to the
MagazineService. All
valid customers added
will have an email (of
theirs) displayed

Pass https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

Feature testing: Remove an existing customer from the magazine service
Test File: MagazineServiceTest_RemoveCustomer.java

Evidence: https://www.youtube.com/playlist?list=PLUktbenWQI5gDoRzDnhuNcYt3JbxL5elC

• Add PayingCustomer to
MagazineService

• Print any of Customer email to
verify

13 Add PayingCustomer with
their supplement of
interest having the same
name but different price
compared to the one
offered by
MagazineService

• Create MagazineService

• Create PayingCustomer

• AddSupplementInterested for
PayingCustomer

o Price $9.99 offered $10
in magazineService

• Add PayingCustomer to
MagazineService

• Print any of PayingCustomer email
to verify

PayingCustomer is not
added to
MagazineService. He will
have no emails displayed

 https://www.y
outube.com/w
atch?v=3_Xy_J
Za9tA&list=PL
UktbenWQI5g
DoRzDnhuNcY
t3JbxL5elC&in
dex=1

Test

Test objective(s) Test step(s) Expected results Pass
/Fail

Evidence

1 Remove PayingCustomer
that has no associates

• Create MagazineService

• Create PayingCustomer

• Add PayingCustomer to
MagazineService

• Remove PayingCustomer from
MagazineService

• Print any of PayingCustomer email
to verify

PayingCustomer is
removed from
MagazineService. He will
have no emails displayed

Pass https://www.y
outube.com/w
atch?v=vtz4X3
o5OHQ&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=2

2 Remove a non-existing
PayingCustomer

• Create MagazineService

• Create PayingCustomer

• Add PayingCustomer to
MagazineService

• Remove non-existing
PayingCustomer from
MagazineService

• Print any of PayingCustomer email
to verify

PayingCustomer is not
removed from
MagazineService

Pass https://www.y
outube.com/w
atch?v=vtz4X3
o5OHQ&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=2

3 Remove PayingCustomer
that has one associate

• Create MagazineService

• Create PayingCustomer

• Create AssociateCustomer
belonging to PayingCustomer

• Add PayingCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

• Print any of Customer email to
verify

• Remove PayingCustomer from
MagazineService

• Print any of Customer email to
verify

The first print (Before
removal) should display
(of theirs) all valid
customers
(PayingCustomer and
AssociateCustomer
types) email

The second print will
display no emails

Pass https://www.y
outube.com/w
atch?v=vtz4X3
o5OHQ&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=2

Feature testing: Print out the text of all the emails for all customers for four weeks of

magazine
Test File: MagazineServiceTest_FourWeeklyEmail.java

Evidence: https://www.youtube.com/playlist?list=PLUktbenWQI5gDoRzDnhuNcYt3JbxL5elC

4 Remove PayingCustomer
that has more than one
associate

• Create MagazineService

• Create PayingCustomer

• Create AssociateCustomer
belonging to PayingCustomer

• Create AssociateCustomer
belonging to PayingCustomer

• Add PayingCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

• Print any of Customer email to
verify

• Remove PayingCustomer from
MagazineService

• Print any of Customer email to
verify

The first print (Before
removal) should display
(of theirs) all valid
customers
(PayingCustomer and
AssociateCustomer
types) email

The second print will
display no emails

 https://www.y
outube.com/w
atch?v=vtz4X3
o5OHQ&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=2

5 Remove
AssociateCustomer

• Create MagazineService

• Create AssociateCustomer

• Add AssociateCustomer to
MagazineService

• Remove AssociateCustomer from
MagazineService

• Print any of Customer email to
verify

AssociateCustomer is
removed from
MagazineService. He will
have no emails displayed

Pass https://www.y
outube.com/w
atch?v=vtz4X3
o5OHQ&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=2

Test

Test objective(s) Test step(s) Expected results Pass
/Fail

Evidence

1 Print out the text of all the
emails for all customers
for four weeks of
magazine given:
1. PayingCustomer has

two associates
2. All three customers

have one
supplement each

• Create MagazineService

• Create PayingCustomer

• Create AssociateCustomer
belonging to PayingCustomer

• Create AssociateCustomer
belonging to PayingCustomer

• Add PayingCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

• Print Four Weekly Email for all

4x same weekly email
associated with
PayingCustomer details
only

4x same weekly email
associated with
AssociateCustomer
details only

4x same weekly email
associated with second
AssociateCustomer
details only

Pass https://www.y
outube.com/w
atch?v=hfkW7
QVIYuE&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=3

2 Print out the text of all the
emails for all customers
for four weeks of
magazine given:
1. Three customers

• Create MagazineService

• Create PayingCustomer

• Create AssociateCustomer
belonging to PayingCustomer

• Create AssociateCustomer
belonging to PayingCustomer

4x same weekly email
associated with
PayingCustomer details
only

4x same weekly email
associated with

Pass https://www.y
outube.com/w
atch?v=hfkW7
QVIYuE&list=P
LUktbenWQI5
gDoRzDnhuNc

2. All three customers
have one
supplement each

3. The three
supplements are not
the same

• Set one of the customers with a
different supplement of interest
then another customer

• Add PayingCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

• Print Four Weekly Email for all

AssociateCustomer
details only

4x same weekly email
associated with second
AssociateCustomer
details only

1 customer will have a
different supplement
displayed for the entire
four-week period

Yt3JbxL5elC&i
ndex=3

3 Print out the text of all the
emails for all customers
for four weeks of
magazine given:
1. Three customers
2. Some customers

have more than 1
supplement of
interest

• Create MagazineService

• Create PayingCustomer

• Create AssociateCustomer
belonging to PayingCustomer

• Create AssociateCustomer
belonging to PayingCustomer

• Assign PayingCustomer and one
AssociateCustomer with two
supplements

• Assign the other
AssociateCustomer with one
supplement

• Add PayingCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

• Add AssociateCustomer to
MagazineService

• Print Four Weekly Email for all

4x same weekly email
associated with
PayingCustomer details
only. Emails display two
supplements subscribed
to

4x same weekly email
associated with
AssociateCustomer
details only. Emails
display two supplements
subscribed to

4x same weekly email
associated with second
AssociateCustomer
details only

Pass https://www.y
outube.com/w
atch?v=hfkW7
QVIYuE&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=3

4 Print out the text of all the
emails for all customers
for four weeks of
magazine given:
1. Three customers
2. Customer has three

supplements

• Create MagazineService

• Create 3x Customers

• Assign Customer(s) with three
supplements

• Add all customers to
MagazineService

• Print Four Weekly Email for all

4x same weekly email
associated with each
specific customer
details. One customer’s
emails will display three
supplements subscribed
to

Pass https://www.y
outube.com/w
atch?v=hfkW7
QVIYuE&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=3

5 Print out the text of all the
emails for all customers
for four weeks of
magazine given:
1. Three customers
2. Remove

AssociateCustomer

• Create MagazineService

• Create 3x Customers

• Add all customers to
MagazineService

• Print Four Weekly Email for all

• Remove AssociateCustomer from
MagazineService

• Print Four Weekly Email for all

The first print (Before
removal) should display
in total 12 emails. Each
customer should have 4x
same email relevant to
their customer details

The second print (after
removal) will display
total 8 emails. The 8
emails does not include
any emails from
removed
AssociateCustomer

Pass https://www.y
outube.com/w
atch?v=hfkW7
QVIYuE&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=3

6 Print out the text of all the
emails for all customers
for four weeks of
magazine given:

1. Three customers

consisting of one
PayingCustomer has
two associates

2. Remove
PayingCustomer

• Create MagazineService

• Create PayingCustomer

• Create AssociateCustomer
belonging to PayingCustomer

• Create AssociateCustomer
belonging to PayingCustomer

• Add all customers to
MagazineService

• Print Four Weekly Email for all

• Remove AssociateCustomer from
MagazineService

The first print (Before
removal) should display
in total 12 emails. Each
customer should have 4x
same email relevant to
their customer details

The second print (after
PayingCustomer
removal) will display no
emails

Pass https://www.y
outube.com/w
atch?v=hfkW7
QVIYuE&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=3

Feature testing: Print out the text for the end of month emails for paying customers
Test File: MagazineServiceTest_EndOfMonthEmails.java

Evidence: https://www.youtube.com/playlist?list=PLUktbenWQI5gDoRzDnhuNcYt3JbxL5elC

• Print Four Weekly Email for all

Test

Test objective(s) Test step(s) Expected results Pass
/Fail

Evidence

1 Print out the text for the
end of month emails for
paying customers given:
1. One PayingCustomer

has many associates

• Create MagazineService

• Set magazine (MagazineService)-
cost $30 and called Times

• Create PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called Men
time

• Pay by credit card

• Create AssociateCustomer
belonging to PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called Men
time

• Create AssociateCustomer
belonging to PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called Men
time

• Add all customers to
MagazineService

• Print End Month Email

1x email end of month
email associated with
PayingCustomer.
Containing atleast

• 3x
Supplements.with
name displayed
Men time. Each
supplement will
end up costing (7 x
4) $28. Cost for
each supplement is
displayed

• Taken from credit
card displayed

• Total cost of
magazine- ($30 x 4
weeks) x 3
customers = 360

• Total charge- (28 +
28 + 28 + 360)
$444

Pass https://www.y
outube.com/w
atch?v=hmSim
dnFcnE&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=4

2 Print out the text for the
end of month emails for
paying customers given:
1. One PayingCustomer

without associates
2. One PayingCustomer

with associate

• Create MagazineService

• Set magazine (MagazineService)-
cost $30 and called Times

• Create PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called
Mens time

• Pay by direct debit

• Create AssociateCustomer
belonging to PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called
Mens time

• Create PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called
Mens time

• Pay by direct debit

• Add all customers to
MagazineService

• Print End Month Email

1x email end of month
associated with
PayingCustomer that has
associate. Containing
email has atleast-

• 2x
Supplements
called Mens
time. Each
supplement
cost (7 x 4)
$28

• Taken from
direct debit

• Total
magazine
cost- ($30 x 4)
x 2 = $240

• Total charge -
$240 + (28 +
28) = 296

1x email end of month
associated with
PayingCustomer without

Pass https://www.y
outube.com/w
atch?v=hmSim
dnFcnE&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=4

 associate. Containing
email has atleast-

• 1x
Supplements
called Mens
time for $28

• Taken from
direct debit

• Total
magazine
cost- $120

• Total charge-
148

3 Print out the text for the
end of month emails for
paying customers given:
1. One PayingCustomer

without associates
2. One PayingCustomer

with associate
3. Remove

PayingCustomer with
associate

• Set magazine (MagazineService)-
cost $30 and called Times

• Create PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called
Mens time

• Pay by direct debit

• Create AssociateCustomer
belonging to PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called
Mens time

• Create PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called
Mens time

• Pay by direct debit

• Add all customers to
MagazineService

• Print End Month Email

• Remove PayingCustomer from
MagazineService

• Print End Month Email

The first print (Before
removal) should display

2x payingCustomer end
of month email

The second print (After
removal) should display

PayingCustomer without
associate. Containing
email has atleast-

• 1x
Supplements
called Mens
time for $28

• Taken from
direct debit

• Total
magazine
cost- $120

• Total charge-
148

Pass https://www.y
outube.com/w
atch?v=hmSim
dnFcnE&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=4

4 Print out the text for the
end of month emails for
paying customers given:
1. One PayingCustomer

without associates
2. One PayingCustomer

with associate
3. Remove

AssociateCustomer

• Set magazine (MagazineService)-
cost $30 and called Times

• Create PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called
Mens time

• Pay by direct debit

• Create AssociateCustomer
belonging to PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called
Mens time

• Create PayingCustomer

• Add offered Supplement to
PayingCustomer- Cost 7 called
Mens time

• Pay by direct debit

• Add all customers to
MagazineService

• Print End Month Email

The first print (Before
removal) should display

1x email end of month
associated with
PayingCustomer that has
associate. Containing
email has atleast-

• 2x
Supplements
called Mens
time. Each
supplement
cost (7 x 4)
$28

• Taken from
direct debit

• Total
magazine
cost- ($30 x 4)
x 2 = $240

• Total charge -
$240 + (28 +
28) = 296

Pass https://www.y
outube.com/w
atch?v=hmSim
dnFcnE&list=P
LUktbenWQI5
gDoRzDnhuNc
Yt3JbxL5elC&i
ndex=4

• Remove AssociateCustomer from
MagazineService

• Print End Month Email

1x email end of month
associated with
PayingCustomer without
associate. Containing
email has atleast-

• 1x
Supplements
called Mens
time for $28

• Taken from
direct debit

• Total
magazine
cost- $120

• Total charge-
148

The second print (After
removal) should display

2x PayingCustomer
without associate.
Containing email has
atleast-

• 1x
Supplements
called Mens
time for $28

• Taken from
direct debit

• Total
magazine
cost- $120

• Total charge-
148

Unit testing has been completed for the following classes- AssociateCustomer, AssociateDatabase,

Customer, Magazine, PayingCustomer, PaymentMethod, Supplement, SupplementDatabase.

Limitations

The program has several limitations. Firstly, the program is not interactive. The basis of the program

is that it can be executed running the test files. There is no GUI interface for the client to add and

delete customer in real time. Another limitation is end of month is calculated as being only 4 weeks.

A month may vary on the number of weeks. March and June are 5 weeks not 4 weeks. But the

program will treat all the months as 4 weeks. Thirdly, there is a lack of console error messages. For

example- if a client adds a customer whom is interested in a supplement that is offered by the

magazine service but at a different price then an error message will not be displayed. While, the

supplement name is the same as the one offered the price is different. The customer will not be

added to magazine service but an error message is not displayed to client. This was done

deliberately. Classes should not be responsible for producing output since there may be various

ways to output class information. For example, in the future the output may be to a form not the

console. Thus, should never couple a class with output

